The Program Management Concept
The mobilization of resources was not the only challenge facing those charged with meeting President Kennedy’s goal. NASA had to meld disparate institutional cultures and approaches into an inclusive organization moving along a single unified path. Each NASA installation, university, contractor, and research facility had differing perspectives on how to go about the task of accomplishing Apollo.41 To bring a semblance of order to the program, NASA expanded the “program management” concept borrowed by T. Keith Glennan in the late 1950s from the military/industrial complex, bringing in military managers to oversee Apollo. The central figure in this process was U.S. Air Force Major General Samuel C. Phillips, the architect of the Minuteman ICBM program before coming to NASA in 1962. Answering directly to the Office of Manned Space Flight at NASA headquarters, which in turn reported to the NASA administrator, Phillips created an omnipotent program office with centralized authority over design, engineering, procurement, testing, construction, manufacturing, spare parts, logistics, training, and operations.42
One of the fundamental tenets of the program management concept was that three critical factors—cost, schedule, and reliability—were interrelated and had to be managed as a group. Many also recognized these factors’ constancy; if program managers held cost to a specific level, then one of the other two factors, or both of them to a somewhat lesser degree, would be adversely affected. This held true for the Apollo program. The schedule, dictated by the president, was firm. Since humans were involved in the flights, and since the president had directed that the lunar landing be conducted safely, the program managers placed a heavy emphasis on reliability. Accordingly, Apollo used redundant systems extensively so that failures would be both predictable and minor in result. The significance of both of these factors forced the third factor, cost, much higher than might have been the case with a more leisurely lunar program such as had been conceptualized in the latter 1950s. As it was, this was the price paid for success under the Kennedy mandate and program managers made conscious decisions based on a knowledge of these factors.43
The program management concept was recognized as a critical component of Project Apollo’s success in November 1968, when Science magazine, the publication of the American Association for the Advancement of Science, observed:
In terms of numbers of dollars or of men, NASA has not been our largest national undertaking, but in terms of complexity, rate of growth, and technological sophistication it has been unique…. It may turn out that [the space program’s] most valuable spin-off of all will be human rather than technological: better knowledge of how to plan, coordinate, and monitor the multitudinous and varied activities of the organizations required to accomplish great social undertakings.44
Understanding the management of complex structures for the successful completion of a multifarious task was an important outgrowth of the Apollo effort.
This management concept under Phillips orchestrated more than 500 contractors working on both large and small aspects of Apollo. For example, the prime contracts awarded to industry for the principal components of just the Saturn V included the Boeing Company for the S-IC, first stage; North American Aviation—S-II, second stage; the Douglas Aircraft Corporation—S-IVB, third stage; the Rocketdyne Division of North American Aviation—J-2 and F-1 engines; and International Business Machines (IBM)—Saturn instruments. These prime contractors, with more than 250 subcontractors, provided millions of parts and components for use in the Saturn launch vehicle, all meeting exacting specifications for performance and reliability. The total cost expended on development of the Saturn launch vehicle was massive, amounting to $9.3 billion. So huge was the overall Apollo endeavor that NASA’s procurement actions rose from roughly 44,000 in 1960 to almost 300,000 by 1965.45
Getting all of the personnel elements to work together challenged the program managers, regardless of whether or not they were civil service, industry, or university personnel. There were various communities within NASA that differed over priorities and competed for resources. The two most identifiable groups were the engineers and the scientists. As ideal types, engineers usually worked in teams to build hardware that could carry out the missions necessary to a successful Moon landing by the end of the decade. Their primary goal involved building vehicles that would function reliably within the fiscal resources allocated to Apollo. Again as ideal types, space scientists engaged in pure research and were more concerned with designing experiments that would expand scientific knowledge about the Moon. They also tended to be individualists, unaccustomed to regimentation and unwilling to concede gladly the direction of projects to outside entities. The two groups contended with each other over a great variety of issues associated with Apollo. For instance, the scientists disliked having to configure payloads so that they could meet time, money, or launch vehicle constraints. The engineers, likewise, resented changes to scientific packages added after project definition because these threw their hardware efforts out of kilter. Both had valid complaints and had to maintain an uneasy cooperation to accomplish Project Apollo.
The scientific and engineering communities within NASA, additionally, were not monolithic, and differences among them thrived. Add to these groups representatives from industry, universities, and research facilities, and competition on all levels to further their own scientific and technical areas was the result. The NASA leadership generally viewed this pluralism as a positive force within the space program, for it ensured that all sides aired their views and emphasized the honing of positions to a fine edge. Competition, most people concluded, made for a more precise and viable space exploration effort. There were winners and losers in this strife, however, and sometimes ill-will was harbored for years. Moreover, if the conflict became too great and spilled into areas where it was misunderstood, it could be devastating to the conduct of the lunar program. The head of the Apollo program worked hard to keep these factors balanced and to promote order so that NASA could accomplish the presidential directive.46
Another important management issue arose from the agency’s inherited culture of in-house research. Because of the magnitude of Project Apollo, and its time schedule, most of the nitty-gritty work had to be done outside NASA by means of contracts. As a result, with a few important exceptions, NASA scientists and engineers did not build flight hardware, or even operate missions. Rather, they planned the program, prepared guidelines for execution, competed contracts, and oversaw work accomplished elsewhere. This grated on those NASA personnel oriented toward research, and prompted disagreements over how to carry out the lunar landing goal. Of course, they had reason for complaint beyond the simplistic argument of wanting to be “dirty-handed” engineers; they had to have enough in-house expertise to ensure program accomplishment. If scientists or engineers did not have a professional competence on a par with the individuals actually doing the work, how could they oversee contractors actually creating the hardware and performing the experiments necessary to meet the rigors of the mission?47
One anecdote illustrates this point. The Saturn second stage was built by North American Aviation at its plant at Seal Beach, California, shipped to NASA’s Marshall Space Flight Center, Huntsville, Alabama, and there tested to ensure that it met contract specifications. Problems developed on this piece of the Saturn effort and Wernher von Braun began intensive investigations. Essentially his engineers completely disassembled and examined every part of every stage delivered by North American to ensure no defects. This was an enormously expensive and time-consuming process, grinding the stage’s production schedule almost to a standstill and jeopardizing the Presidential timetable.
When this happened Webb told von Braun to desist, adding that “We've got to trust American industry.” The issue came to a showdown at a meeting where the Marshall rocket team was asked to explain its extreme measures. While doing so, one of the engineers produced a rag and told Webb that “this is what we find in this stuff.” The contractors, the Marshall engineers believed, required extensive oversight to ensure they produced the highest quality work. A compromise emerged that was called the 10 percent rule: 10 percent of all funding for NASA was to be spent to ensure in-house expertise and in the process check contractor reliability.48
- On the NASA organizational culture see, Howard E. McCurdy, Inside NASA: High Technology and Organizational Change in the U.S. Space Program (Baltimore, MD: Johns Hopkins University Press, 1993).X
- Albert F. Siepert, memorandum to James E. Webb, 8 February 1963, NASA Historical Reference Collection; Sarah M. Turner, “Sam Phillips: One Who Led Us to the Moon,” NASA Activities, 21 (May/June 1990): 18-19.X
- Aaron Cohen, “Project Management: JSC’s Heritage and Challenge,” Issues in NASA Program and Project Management (Washington, DC: NASA SP-6101, 1989), pp. 7-16; C. Thomas Newman, “Controlling Resources in the Apollo Program,” Issues in NASA Program and Project Management (Washington, DC: NASA SP-6101, 1989), pp. 23-26; Eberhard Rees, “Project and Systems Management in the Apollo Program,” Issues in NASA Program and Project Management (Washington, DC: NASA SP-6101 (02), 1989), pp. 24-34.X
- Dael Wolfe, Executive Officer, American Association for the Advancement of Science, editorial for Science, 15 November 1968.X
- Roger E. Bilstein, Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles (Washington, DC: NASA SP-4206, 1980), passim, and Appendix E.X
- McCurdy, Inside NASA, pp. 11-98.X
- See the discussion of this issue in Sylvia Doughty Fries, “Apollo: A Pioneering Generation,” International Astronautical Federation, 37th Congress, 9 October 1986, Ref. No. IAA-86-495; Sylvia Doughty Fries, NASA Engineers and the Age of Apollo (Washington, DC: NASA SP-4104, 1992), passim.X
- Eberhard Rees, memorandum, 9 December 1965, quoted in Bilstein, Stages to Saturn, p. 227; interview with John D. Young by Howard E. McCurdy, 19 August 1987, NASA Historical Reference Collection.X