Chapter 4: The Maria
Areas of mare material occupy about 15 percent of the Moon's total surface. As shown in figure 14, most of them occur on the Earth-facing hemisphere. Mare areas are of two types, those that fill multiringed circular basins and those that fill irregular areas. The circular basins are believed to be impact features formed by the collision of giant meteoroids with the lunar surface; these were later filled to varying degrees by mare material. The basins lie at successively lower levels to the east, with Mare Smythii-the easternmost of the mare basins on the near side-lying almost 5 km below nominal lunar radius. The irregular maria lie in lowlands. The largest of these is Oceanus Procellarum, which lies on the west side of the Moon and is almost 2 km below nominal mean lunar radius.
Mare filling is characterized by several distinctive features that indicate a volcanic origin. These include many broad low domes with summit craters. Some of these domes closely resemble terrestrial basaltic shield volcanoes. In other areas, irregular and steep-sided volcanic piles dominate. Elsewhere, clusters of domes occur as in the Marius and Rumker Hills. Another type of feature is the broad lobate flow fronts that mark the edges of lava flows; these flow fronts extend several hundred kilometers in length and are as much as 100 m high. Other elongate flows closely resemble terrestrial flood basalts; samples returned by Apollos 11, 12, 15, and 17 confirmed this resemblance.
Other typical features on the maria are sinuous rilles and wrinkle ridges. Many sinuous rilles originate in craters near the higher margins of the mare basins and flow into the lowlands. Apollo 15 collected samples from the margins of Hadley Rille and confirmed the hypothesis that sinuous rilles are basaltic lava channels. Wrinkle ridges occur in all mare regions and form circumferential or medially transecting patterns.
Ages of the maria are being determined by two methods. Absolute ages are given by radiometric techniques. From these we know that the sampled lunar basalts are much older than their terrestrial counterparts. The basaltic lava flows range in age from 3.15 to 3.85 billion years, so the episode of lava filling on the Moon must have continued for at least 700 million years. Relative ages can be established by counting craters in mare surfaces. Comparison of crater counts on the lightly cratered lava flows in the northern part of Oceanus Procellarum with radiometric dates obtained for the basalts returned to Earth suggests that the Procellarum flows may be as young as 2 billion years. This date needs to be confirmed because it more than doubles the time of lava production.
Analyses of the returned samples show that the chemical composition of mare basalts varies across the Moon. These differences have also been correlated with the subtle color changes seen in spectral reflectance measurements; as a result, chemical variations can now be mapped far from the Apollo landing sites. - G.W.C. and H.M.
On the explanation accompanying the map, each unit is identified and its relative position in the lunar time scale is shown. The explanation on the original map also included a description of the physical characteristics of each unit and a very brief interpretation of its origin and history. For example, unit pItm occurs on the steep hills north and southwest of the landing site and is interpreted to be composed of ancient rocks uplifted when the Serenitatis basin was formed. Unit Ips is a much younger, relatively smooth plains material that covers most of the Taurus-Littrow Valley. Before the mission it was interpreted as ejecta breccia or lava emplaced in a fluidized state; samples and other data gathered during the mission confirmed it was mare lava. Dark mantle material is shown by dot or line shading rather than by letter symbols and color. Throughout most of the valley it appears to be on top of (hence, younger than) unit Ips. It was interpreted as a blanket of pyroclastic debris. Unit Cb, bright mantle material, was interpreted as a deposit of avalanche debris derived from the steep mountain partly shown in the lower left corner of the map. - G.W.C.
|
|
. |
|
Dotted where buried; buried unit in parathensis. |
|||
|
|||
Bar and ball on downthrown side; dotted where buried
|
|||
|
|||
Line at base of slope, barb pointing downslope; solid where steep and high; open where gentle or low; may coincide with contact Interpretation: steep scarp in most places marks break in slope located near buried fault |
|||
|
|||
Groove, scarplet, ledge, or sharp break in slope Interpretation: slump scar, mass wasting trough, surface expression of fault, bedding plane, or trough between constructional ridges on Cb |
|||
|
|||
Craters > 500 m, old craters, crater remnants, and inferred craters |
|||
|
|||
Rimless or low rimmed Interpretation: degraded craters, graben remnants, and possibly volcanic craters; locally may be mass wasting, or drainage, pits along faults
|
|||
|
|||
Ih: light halo dh: very dark halo Small circle or dot locates crater or pit Interpretation: excavated material, possibly locally volcanic material |