AS15-8910 (P)
FIGURE 239. - The four large depressions in this photograph are part of a cluster of secondary impact craters on the floor of Gagarin, a large (275-km-diameter) crater on the far side of the Moon. The secondaries pictured here lie close to Gagarin's northeastern rim. Mapped as pre-Nectarian in age (Stuart-Alexander, 1976), Gagarin is filled with relatively bright plains-forming deposits. The plains deposits are probably about I km thick; Gagarin was originally about 4 to 5 km deep.
Of particular interest in this photograph are the peculiar bumpy floors of the two craters nearest the upper right corner of the photograph. Several other craters in this part of Gagarin have the same morphology. The rounded hills or bumps, I/z to 2 km across, fill the crater floors so that the craters are shallower than is normal for craters of their size and age. For example, the center crater of the four is now the deepest, yet the two eastern ones are as wide or wider and, therefore, should be at least as deep.
A possible explanation for both the surface morphology and the raised floor level of the two eastern craters may be related to the intrusion of magma into the brecciated materials that probably occurred on the floors of these craters. It is known that the bottoms of freshly formed impact craters of this size often contain a deposit of low- density fragmental material. Even though areas of mare material are quite limited on the far side of the Moon, it is reasonable to assume that mare-basalt magma underlies the subsurface in this section of the floor of Gagarin. Mare lava, for example, is exposed in the floor of a larger (90-km-diameter) crater on the west rim of Gagarin. (See fig. 240.) The fracture system associated with the inner walls of a large crater is a likely conduit along which magma may rise and then intrude into the weakest strata. Because the floors of impact craters consist of low-density fragmental material, any crater on the floor of Gagarin, situated near its walls, may have served as a locus for magmatic intrusion. As lunar mare magma rose through the subsurface from a zone of melting at depth and reached the debris in the two crater floors, it may have lifted the debris and fractured it into segments l/2 to 2 km across. Surficial fragmental debris from the uplifted segments then drained into the cracks between them to produce the bumpy, rounded topography. The low-density segments would tend to "float" at the same general level on the underlying denser magma, with the largest segments standing highest. The relative amount of uplift of materials in the craters in this photograph correlates both with the original depth of the craters (inferred from their diameters, which are proportional to depth) and with their proximity to the wall of Gagarin, which is located about 1 1/2 km inside the northeastern corner of the picture. Correlation with crater depth suggests that the magma intruded under the deepest crater because the roof was thinnest there and offered the least resistance. Correlation with proximity to Gagarin's wall indicates that the inferred fracture zone near the wall provided a locus for easier subsurface flow and better subsurface plumbing for the upwelling magma. The bumpy material in the northwest depression stands highest of all. Although it was neither the deepest nor the nearest to Gagarin's wall, it may have been centered over the contact between Gagarin's original floor material and the wall and thus been a locus for intrusion. Subsurface flow from the largest (northeastern) depression into the northwestern one may have contributed to uplift of the latter depression; the hill forming the septum between them is the largest uplifted block in the cluster and indicates that intrusion took place under the septum. - R.E.
FIGURE 240. - This photograph shows part of the floor and walls of the largest (90 km) crater inside the old pre-lmbrian crater Gagarin on the far side of the Moon. The 90-km crater is partly filled with relatively dark, young mare materials and contains the circular depression shown here. The depression is about 4 km in diameter and has a very low raised rim or none at all. Rock layering and narrow terraces along resistant layers are visible. The floor of the depression and the adjacent mare surfaces have an equal density of craters, suggesting that they are the same age.
Morphological evidence supports the hypothesis that the depression was formed by collapse of the mare materials. Two narrow and shallow rilles debouch high on the west and east depression walls; they are interpreted as lava tubes that originated under the depression before it collapsed. This interpretation is further supported by the mare ridge, which extends down the south wall onto the depression floor. A dome adjacent to the ridge on the floor may also record late volcanic activity in the depression. - M.J.G.