Scouting the Moon

By EDGAR M. CORTRIGHT

A photo of the Earth rise over the eastern rim of the Moon
Our first look at Earth rise over the eastern rim of the Moon was radioed back by Lunar Orbiter I on August 23,1966. At the moment this picture was shot, the spacecraft was flying 730 miles above the lunar far side. The photo gave man a disarming view of his own world. But the sweep of tortured lunar surface revealed in the Orbiter pictures was a dramatic preview of the unearthly realm that the Apollo astronauts would soon see.

After centuries of studying the Moon and its motions, most astronomers faced with diminishing returns - had abandoned it to lovers and poets by the time that Sputnik ushered in the space age. The hardy few who had not been wooed away to greener astronomical pastures were soon to be richly rewarded for their patience.

Before the invention of the telescope in 1608, astronomers had to be content with two good eyes and a fertile imagination to surmise the nature of the lunar surface. As a consequence they mainly devoted themselves to the mathematics of the Moon’s motions relative to the Earth and Sun. The early telescopes that first revealed the crater-pocked face of the Moon touched off several centuries of speculation about the lunar surface by scientists and fiction writers alike - it often being unclear who was writing the fiction. But telescopes peering through the turbulent atmosphere of Earth have severe limitations. By 1956 the very best terrestrial telescope images of the Moon were only able to resolve objects about the size of the U.S. Capitol. Anything smaller was a mystery.

A photo of the lunar surface
Galileo drew the Moon in 1610 and described its surface as “uneven, rough, replete with cavities and packed with protruding eminences.” While a correct description, his details are unrecognizable now. Harold Urey enhanced our view of the lunar surface by creating this montage made from segments of Lick Observatory photos taken when the Sun angle was low so that shadows emphasized relief.

So the question remained: What was the lunar surface really like? While few people really believed the Moon to be made of green cheese, many scientific hypotheses cherished not long ago were equally strange and rather more ominous. They included deep fields of dust into which a spacecraft might sink; a labyrinth of “fairy castles” such as children build by dripping wet sand at the beach; electrostatic dust that might spring up and engulf an alien object; and treacherously covered crevasses into which an unwary astronaut might fall. What proved to be the most accurate prediction, however, likened the Moon to a World War I battlefield, bombarded by a rain of meteoroids throughout the millennia, and churned into a wasteland of craters and debris. The absence of an atmosphere and the low gravitational field would allow small secondary particles to be blasted from the surface by a primary meteoroid impact and thrown unimpeded halfway around the Moon. This led to the concept of a uniform blanket of ejecta over the entire Moon.

A photo of Juno II launch vehicle
A Juno II launch vehicle was made up of an Army Ballistic Missile Agency’s modified Jupiter first stage with a spin-stabilized solid-rocket upper stage developed by the Jet Propulsion Laboratory.
A photo of 13.4-lb Pioneer IV payload
JPL also developed the 13.4-lb Pioneer IV payload. Launched March 3, 1959, it helped detect and measure the second of the Earth’s great radiation belts.
A photo of the Thor-Able launch vehicle
The Thor-Able, with more advanced upper stages, propelled the 94.4-lb Pioneer V spacecraft to escape velocity on March 11, 1960.
A photo of an instrument that measured the Earth’s outer magnetosphere
The instrumentation of this payload measured the Earth’s outer magnetosphere, detected an interplanetary magnetic field, helped explain the effect of solar flares on cosmic rays, and first detected the plasma clouds emitted by the Sun during solar storms. But it told nothing new about the Moon.
A photo of the Atlas-Able launch vehicle
An unsuccessful effort to orbit the Moon was made with the Atlas-Able launch vehicle. The launch vehicle was capable of injecting 380 lb into a translunar trajectory.
A photo of P-31 spacecraft
The 39-in. spacecraft carried two 18.5-lb-thrust liquid-propellant engines for flight-path corrections and injection into lunar orbit.

But our story is getting ahead of itself. The surface properties of the Moon were largely unknown in 1958, a matter which assumed great practical importance when man’s first journeys to the Moon began to take shape. How much weight would the surface support? What were the slopes? Were there many rocks - and of what size? Would the dust or dirt cling? What was the intensity of primary and secondary meteoroid bombardment? What was the exact size and shape of the Moon, and what were the details of the lunar gravity field into which our spaceships would one day plunge?

A SHAKY START

The military rockets developed in the 1950s provided a basic tool with which it became possible to send rudimentary spacecraft to the Moon. Both the Army and the Air Force were quick to initiate efforts to be the first to the Moon with a manmade object. (The Russians, as it proved, were equally quick, or quicker.) These first U.S. projects, which were transferred in 1958 to the newly formed National Aeronautics and Space Administration, consisted of four Air Force Thor-Able rockets, and two Army Juno II rockets, each with tiny payloads, designed to measure radiation and magnetic fields near the Moon and, in some cases, to obtain rudimentary pictures. NASA and the Air Force then added three Atlas-Abie rockets, which could carry heavier payloads, in an attempt to bolster these early high-risk efforts. Of these nine early missions launched between August 1958 and December 1960, none really succeeded. Two Thor-Able and all three Atlas-Able vehicles were destroyed during launch. One Thor-Able and one of the Juno II’s did not attain sufficient velocity to reach the Moon and fell back to Earth. Two rockets were left.

A photo of the far side of the Moon
Mankind’s first glimpse of the far side of the Moon came in October 1959, provided by the Soviet spacecraft Luna 3. Although crude compared with later views, its pictures showed a number of lunar features for the first time. One of these was the crater Tsiolkovsky, named for the famed Russian mathematician, which appears here in the lower right as a small sea with an island in it. The images from Luna 3 indicated that the Moon’s far side lacked the large mare areas an the side facing Earth.

The Soviets were also having problems. But on January 4, 1959, Luna 1, the first space vehicle to reach escape velocity, passed the Moon within about 3700 miles and went into orbit about the Sun. Two months later the United States repeated the feat with the last Juno II, although its miss distance was 37,300 miles. A year later the last Thor-Able payload flew past the Moon, but like its predecessors it yielded no new information about the surface. On October 7, 1959, the Soviet Luna 3 became the first spacecraft to photograph another celestial body, radioing to Earth crude pictures of the previously unseen far side of the Moon. The Moon was not a “billboard in the sky” with slatted back and props. Its far side was found to be cratered, as might be expected, but unlike the front there were no large mare basins. The primitive imagery that Luna 3 returned was the first milepost in automated scientific exploration of other celestial bodies.

A photo of Ranger
A sophisticated craft for its day, the 800-lb Ranger or its launch vehicle failed in its first six tries. Then it behaved beautifully, returning thousands of pictures in its last three flights, most of them far superior to the best that could be obtained from telescopes on Earth. Rangers crashed on the Moon at nonsurvivable velocity; their work was done in the few short moments from camera turn-on to impact.
A photo of Alphonsus, a lunar crater
Heading in toward Alphonsus, a lunar crater of high scientific interest, Ranger IX sent back 5814 pictures of the surface before it crashed. The one at left, taken several score miles away, shows part of the crater floor and slumped wall of Alphonsus, a rille structure, and a varied population of craters. Ranger pictures were exciting in the wholly new details of the Moon that they provided.
A photo of craters taken by Ranger IX
The last instant before it srnashed, Ranger IX radioed back this historic image, taken at a spacecraft altitude of one-third mile about a quarter of a second before impact. The area pictured is about 200 by 240 feet, and details about one foot in size are shown. The Ranger pictures revealed nothing that discouraged Apollo planners, although they did indicate that choosing an ideally smooth site for a manned landing was not going to be an easy task.

Undaunted by initial failures, and certainly spurred on by Soviet efforts, a NASA team began to plan a long-term program of lunar exploration that would embody all necessary ingredients for success. The National Academy of Sciences was enlisted to help draw the university community into the effort. The Jet Propulsion Laboratory, a California Institute of Technology affiliate that had been transferred from the Army to NASA in 1958, was selected to carry out the program. JPL was already experienced in rocketry and had participated in the Explorer and Pioneer IV projects.

OUR FIRST CLOSE LOOK

The first project to emerge from this government/university team was named Ranger, to connote the exploration of new frontiers. Subsequently Surveyor and Prospector echoed this naming theme. (Planetary missions adopted nautical names such as Mariner, Voyager, and Viking.) The guideline instructions furnished JPL for Ranger read in part: “The lunar reconnaissance mission has been selected with the major objective . . . being the collection of data for use in an integrated lunar-exploration program. . . . The [photographic] system should have an overall resolution of sufficient capability for it to be possible to detect lunar details whose characteristic dimension is as little as 10 feet.” Achieving this goal did not come about easily.

Cross-cut of Atlas-Centaur launch vehicle
The Surveyor mission had been conceived in 1959 as a scheme to soft-land scientific instruments an the Moon’s surface. It was a highly ambitious plan that required both development of a radical new launch vehicle and the new technology of a closed-loop, radar-controlled automated landing. The cutaway drawing shows the Atlas-Centaur launch vehicle. The Atlas-Centaur, a major step forward in rocket propulsion, was the first launch vehicle to use the high-energy propellant combination of hydrogen and oxygen. Its new Centaur upper stage, built by General Dynamics, had two Pratt & Whitney RL-10 engines of 15,000-lb thrust each. The first stage was a modified Atlas D having enlarged tanks and increased thrust.
Surveyor landing sequence
The main events in a successful Surveyor landing sequence.

The initial choice of launch vehicle for the Ranger was the USAF Atlas, mated with a new upper stage to be developed by JPL, the Vega. Subsequently NASA cancelled the Vega in favor of an equivalent vehicle already under development by the Air Force, the Agena. This left JPL free to concentrate on the Ranger. The spacecraft design that evolved was very ambitious for its day, incorporating solar power, full three-axis stabilization, and advanced communications. Clearly JPL also had its eye on the planets in formulating this design.

Photo of Surveyor
The spidery Surveyor consisted of a tubular framework perched an three shock-absorbing footpads. Despite ist queer appearance, it incorporated some of the most sophisticated automatic systems man had ever hurled into space (see specifications below). The first one launched made a perfect soft landing an the Moon, radioing back to Earth a rich trove of imagery and data. Seven were launched in all; one tumbled during course correction, one went mysteriously mute during landing, and the remaining five were unqualified successes.
TYPICAL SURVEYOR SPECIFICATIONS WERE:
WEIGHT
Weight at launch 2193 lb
Landed weight 625 lb
POWER
Solar Panel 90 watts
Batteries 230 ampere-hours
COMMUNICATIONS
Dual transmitters 10 watts each
GUIDANCE AND CONTROL
Inertial reference 3-axis gyros
Celestial reference Sun and Canopus sensors
Attitude control cold gas jets
Terminal landing automated closed loop, with radar altimeter and doppler velocity sensor
PROPULSION
Main retrorocket 9000-lb solid fuel
Vernier retrorockets throttable between 30- and 102-lb thrust each
TV CAMERA
Focal length 25 or 100 mm
Aperture f/4 to f/22
Resolution 1 mm at 4 m
Surface photo of Oceanus Procellarum
Its insectlike shadow was photographed by Surveyor I on the desolate surface of Oceanus Procellarum. During the long lunar day it shot 10,386 pictures, including the 52 in this mosaic. The noon temperature of 235° F dropped to 250° below zero an hour after the Sun went down.

Of a total of nine Rangers launched between 1961 and 1965, only the last three succeeded. From the six failures we learned many lessons the hard way. Early in the program, an attempt was made to protect the Moon from earthly contamination by sterilizing the spacecraft in an oven. This technique, which is now being used on the Mars/Viking spacecraft, had to be abandoned at that time when it wreaked havoc with Ranger’s electronic subsystems.

In the first two launches in 1961 the new Agena B upper stage failed to propel the Ranger out of Earth orbit. Failures in both the launch vehicle and spacecraft misdirected the third flight. On the fourth flight the spacecraft computer and sequencer malfunctioned. And on the fifth flight a failure occurred in the Ranger power system. The U.S. string of lunar missions with little or no success had reached fourteen. Critics were clamoring that Ranger was a “shoot and hope” project. NASA convened a failure review board, and its studies uncovered weaknesses in both the design and testing of Ranger. Redundancy was added to electronic circuits and test procedures were tightened. As payload Ranger VI carried a battery of six television cameras to record surface details during the final moments before impact. When it was launched on January 30, 1964, we had high confidence of success. Everything seemed to work perfectly. But when the spacecraft plunged to the lunar surface, precisely on target, its cameras f ailed to turn on. I will never forget the feeling of dismay in the JPL control room that day.

Photo of crater Calaverius
The first lunar soft landing was accomplished by Russia’s Luna 9 on February 3, 1966, about 60 miles northeast of the crater Calaverius. Its pictures showed details down to a tenth of an inch five feet away. They indicated no loose dust layer, both rounded and angular rock fragments, numerous small craters, some with slope angles exceeding 40 degrees, and generally granular surface material. These results increased confidence that the Moon was not dangerously soft for a manned landing.
Photo of deep depression made by Surveyor
Surveyor I televised excellent pictures of the depth of the depression in the lunar soil made by its footpad when it soft-landed on June 2, 1966, four months after Luna 9. Calculations from these and similar images set at rest anxieties about the load-bearing adequacy of the Moon. Some scientists had theorized that astronauts could be engulfed in dangerously deep dust layers, but Surveyor’s footpad pictures, as well as the digging done by the motorized scoop on board, indicated that the Moon would readily support the LM and its astronauts.

But we all knew we were finally close. Careful detective work with the telemetry records identified the most probable cause as inadvertent turn-on of the TV transmitter while Ranger was still in the Earth’s atmosphere, whereupon arcing destroyed the system. The fix was relatively simple, although it delayed the program for three months. On July 28, 1964, Ranger VII was launched on what proved to be a perfect mission. Eighteen minutes before impact in Oceanus Procellarum, or Ocean of Storms, the cameras began transmitting the first of 4316 excellent pictures of the surface. The final frame was taken only 1400 feet above the surface and revealed details down to about 3 feet in size. It was a breathless group of men that waited the arrival of the first quick prints in the office of Bill Pickering, JPL’s Director. The prints had not been enhanced and it was hard to see the detail because of lack of contrast. But those muddy little pictures with their ubiquitous craters seemed breathtakingly beautiful to us.

By the time of the Ranger VII launch, the Apollo program had already been underway for three years, and Ranger had been configured and targeted to scout possible landing sites. Thus Ranger VIII was flown to a flat area in the Sea of Tranquility where it found terrain similar to that in the Ocean of Storms: gently sloping plains but craters everywhere. It began to look as if the early Apollo requirement of a relatively large craterless area would be difficult to find. As far as surface properties were concerned, the Ranger could contribute little to the scientific controversy raging over whether the Moon would support the weight of a machine - or a man.

Photo of Surveyor digging
Like a tiny back hoe, the surface sampler fitted to some Surveyors could dig trenches in the lunar soil. Above, the smooth vertical wall left by the scoop indicated the cohesiveness of the fine lunar material. Variations in the amount of current drawn by the sampler motor gave indication of the digging effort needed. At left above, the sampler is shown coming to the rescue when the head of the alpha-scattering instrument failed to deploy on command. After two gentle downward nudges from the scoop, the instrument dropped to the surface.
Photo of a rock
“A dinosaur’s skull” was the joking name that Surveyor I controllers used for this rock. Geologists on the team were more solemn: “A rock about 13 feet away, 12 by 18 inches, subangular in shape with many facets slightly rounded. Lighter parts of the rock have charper features, suggesting greater resistance to erosion."
Photo of a photometric chart attached to an omni-antenna
Surveyor VI hopped under its own power to a second site about eight feet from its landing spot. This maneuver made it possible to study the effect of firing rocket engines that impinged an the lunar surface. Picture at left below shows a photometric chart attached to an omni-antenna, which was clean after first landing. Afterward, the chart was coated with an adhering layer of fine soil blasted out of the lunar surface.

To get maximum resolution of surface details, it was necessary to rotate Ranger so that the cameras looked precisely along the flight path. This was not done on Ranger VII in order to avoid the risk of sending extra commands to the attitude-control system. I recall that on Ranger VIII JPL requested permission to make the final maneuver. NASA denied permission - we were still unwilling, after the long string of failures, to take the slightest additional risk. It was not until Ranger IX that JPL made the maneuver and achieved resolution approaching 1 foot in the last frame. This final Ranger, launched on March 21, 1965, was dedicated to lunar science rather than to reconnaissance of Apollo landing sites. It returned 5814 photographs of the crater Alphonsus, again showing craters within craters, and some rocks. Despite its dismal beginnings the Ranger program was thus concluded on a note of success. Proposed follow-on missions were cancelled in favor of upcoming Surveyor and Orbiter missions, whose development had been proceeding concurrently.

TESTING THE SURFACE

Surveyor, which had been formally approved in the spring of 1960, was originally conceived for the scientific investigation of the Moon’s surface. As in the case of the Ranger, its use was redirected according to the needs of Apollo.

With the proposed addition of an orbiting version of Surveyor, later to become Lunar Orbiter, the unmanned lunar-exploration program in support of Apollo shaped up this way: Ranger would provide us with our first look at the surface, Surveyor would make spot checks of the mechanical properties of the surface; and Lunar Orbiter would supply data for mapping and landing-site selection. The approach was sound enough, but carrying it out led us into a jungle of development difficulties.

Few space projects short of Apollo itself embodied the technological audacity of Surveyor. Its Atlas-based launch vehicle was to make use of an entirely new upper stage, the Centaur, the world’s first hydrogen-fueled rocket. It had been begun by the Department of Defense and later transferred to NASA. Surveyor itself was planned to land gently on the lunar surface, set down softly by throttable retrorockets under control of its own radar system. It was to carry 350 pounds of complex scientific instruments. Responsibility for continuing the Centaur development was placed with the Marshall Space Flight Center, with General Dynamics the prime contractor. JPL took on the task of developing the Surveyor, and the Hughes Aircraft Company won the competition for building it. We soon found that it was a very rough road. Surveyor encountered a host of technical problems that caused severe schedule slips, cost growth, and weight growth. The Centaur fared little better. Its first test flight in 1962 was a failure. Its lunar payload dropped from the planned 2500 pounds to an estimated 1800 pounds or less - not sufficient for Surveyor. Its complex multistart capability was in trouble. Wernher von Braun, necessarily preoccupied with the development of Saturn, recommended cancelling Centaur and using a Saturn-Agena combination for Surveyor.

At this point we regrouped. Major organizational changes were made at JPL and Hughes to improve the development and testing phases of Surveyor. NASA management of Centaur was transferred to the Lewis Research Center under the leadership of Abe Silverstein, where it would no loncer have to compete with Saturn for the attention it needed to succeed. Its initial capabilities were targeted to the minimum required for a Surveyor mission - 2150 pounds on a lunar-intercept trajectory. This reduced weight complicated work on an already overweight Surveyor, and the scientific payload dropped to about 100 pounds.

It all came to trial on May 31, 1966, when Surveyor I was launched atop an Atlas-Centaur for the first U.S. attempt at a soft landing. On June 2, Surveyor I touched down with gentle perfection on a level plain in the Ocean of Storms, Oceanus Procellarum. A large covey of VIPs had gathered at the JPL control center to witness the event. One of them, Congressman Joseph E. Karth, whose Space Science and Applications Subcommittee watched over both Surveyor and Centaur, had been both a strong supporter and, at times, a tough critic of the program. The odds for success on this complex and audacious first mission were not high. I can still see his broad grin at the moment of touchdown, a grin which practically lighted up his corner of the darkened room. We sat up most of the night watching the first of the 11,240 pictures that Surveyor I was to transmit.

Four months prior to Surveyor’s landing, on February 3, 1966, the Russian Luna 9 landed about 60 miles northeast of the crater Calaverius, and radioed back to Earth the first lunar-surface pictures. This was an eventful year in lunar exploration, for only two months after Surveyor I, the U.S. Lunar Orbiter I usbered in that successful and richly productive series of missions.

A photo of rolling highlands
The rolling highlands north of Tycho are portrayed with remarkable clarity in this mosaic assembled from among Surveyor VII’s 21,038 photographs. To estimate scale, the boulder in the foreground is 2 feet across, the crater about 5 feet wide, and the far hills and ravines some 8 miles distant.
A photo of dugged area next to the spacecraft
Surveyor VII’s “garden” was a heavily worked-over area next to the spacecraft. Trenches were dug with the articulated scoop to give data on the mechanical properties of the surface. At left is the alpha-backscattering instrument that provided accurate measurements of the chemical composition of the surface.

Surveyor found, as had Luna before it, a barren plain pitted with countless craters and strewn with rocks of all sizes and shapes. No deep layer of soft dust was found, and analysts estimatcd that the surface appeared to be firm enough for both spacecraft and men. The Surveyor camera, which was more advanced than Luna’s, showed very fine detail. The first frame transmitted to Earth showed a footpad and its impression on the lunar surface, which we had preprogrammed just in case that was the only picture that could be received. At our first close glimpse of the disturbed lunar surface, the material seemed to behave like moist soil or wet sand, which, of course, it was not. Its appearance was due to the cohesive nature of small particles in a vacuum.

Surveyor II tumbled during a midcourse maneuver and was lost, but on April 19, 1967, Surveyor III made a bumpy landing inside a 650-foot crater in the eastern part of the Sea of Clouds. Its landing rockets had failed to cut off and it skittered down the inner slope of a crater before coming to rest. Unlike its predecessors, Surveyor III carried a remotely controlled device that could dig the surface. During the course of digging, experimenters dropped a shovelful of lunar material on a footpad to examine it more closely. When Surveyor III was visited by the Apollo 12 astronauts 30 months later in 1970, the little pile was totally undisturbed, as can be seen in the photograph reproduced at the beginning of Chapter 12.

The historic rendezvous of Apollo 12 with Surveyor III would never have been possible without the patient detective work of Ewen Whitaker of the University of Arizona. The difficulty was that the landing site of Surveyor was not precisely known. Using Surveyor pictures of the inside of the crater in which it had landed, Whitaker compared surface details with details visible in Orbiter photographs of the general area that had been taken before the Surveyor landing. He eventually found a 650-foot crater that matched, and concluded that that was where Surveyor must be. Thus the uncertainty in Surveyor’s location was reduced from several miles down to a single crater. By using Orbiter photographs as a guide, Apollo 12 was able to fly down a “cratered trail” to a landing only 600 feet away from Surveyor.

Surveyor IV failed just minutes before touchdown, but the last three Surveyors were successful. On September 10, 1967, Surveyor V landed on the steep inner slopes of a 30 by 40 foot crater on Mare Tranquillitatis. It carried a new instrument, an alpha-backscattering device developed by Anthony Turkevich of the University of Chicago. With this device he was able to make a fairly precise analysis of the chemical composition of the lunar-surface material, which he correctly identified as resembling terrestrial basalts. This conclusion was also supported by the manner in which lunar material adhered to several carefully calibrated magnets on Surveyor. Two days after landing, Surveyor V’s engines were reignited briefly to see what effect they would have on the lunar surface. The small amounts of erosion indicated that this would pose no real problem for Apollo, though perhaps causing some loss of visibility just before touchdown.

Surveyor VI checked out still another possible Apollo site in Sinus Medii. The rocket-effects experiment was repeated and this time the Surveyor was “flown” to a new location approximately 8 feet from the original landing point. Some of the soil thrown out by the rockets stuck to the photographic target on the antenna boom, as shown here.

The last Surveyor was landed in a hiiyhland area just north of the crater Tycho on January 9, 1968. A panoramic picture of this ejecta field taken by Surveyor VII is shown here as well as a mosaic of its surface “gardening” area. I remember walking into the control room at JPL at the moment the experimenters were attempting to free the backscatter instrument, which had hung up during deployment. Commands were sent to the surface sampler to press down on it. The delicate operation was being monitored and guided with Surveyor’s television camera. When I started asking questions, Dr. Ron Scott of Cal Tech crisply reminded me that at the moment they were “quite busy”. I held my questions - and they got the stuck instrument down to the surface. It seemed almost unreal to be remotely repairing a spacecraft on the Moon some quarter of a million miles away.

Before the launch of Surveyor I, in the period when we faced cost overruns and deep technical concerns, NASA and JPL had pressed the Hughes Aircraft Company to accept a contract modification that would give up some profit already earned in favor of increased fee opportunities in the event of mission successes. They accepted, and this courageous decision paid off for both parties. NASA of course was delighted with five out of seven Surveyor successes.

MAPPING AND SITE SELECTION

Meanwhile the third member of the automated lunar exploration team had already completed its work. The fifth and last Lunar Orbiter had been launched on August 1, 1967, nearly half a year earlier. When JPL and Hughes began to experience difficulties with Surveyor development, and with the Centaur in deep trouble, NASA decided to back up the entire proaram with a different team and different hardware. The Surveyor Orbiter concept was scrapped, and NASA’s Langley Research Center was directed to plan and carry out a new Lunar Orbiter program, based on the less risky Atlas-Acena D launch vehicle. Langley prepared the necessary specifications and Boeing won the job. Boeing’s proposed design was beautifully straightforward except for one feature, the camera. Instead of being all-electronic as were prior space cameras, the Eastman Kodak camera for the Lunar Orbiter made use of 70-mm film developed on board the spacecraft and then optically scanned and telemetered to Earth. Low-speed film had to be used so as not to be fogged by space radiation. This in turn required the formidable added complexity of image-motion compensation during the instant of exposure. Theoretically, objects as small as three feet could be seen from 30 nautical miles above the surface. If all worked well, this system could provide the quality required for Apollo, but it was tricky, and it barely made it to the launch pad in time to avoid rescheduling.

A photo of the crater on the Moon,Tycho
The youngest big crater on the Moon is Tycho, which is about 53 miles across and nearly 3 miles deep. These Orbiter V photographs reveal its intricate structure. A high central peak arises from the rough floor, and the crater wall has extensively slumped. The comparative scarcity of small craters within Tycho indicate its relatively recent origin. Flow features seen in both pictures could have been molten lava, volcanic debris, or fluidized impact-ejected material. Surveyor VII landed about 18 miles north of Tycho, in the area indicated by the white circle above. Enlargements of these pictures show an abundance of fissures and large fractured blocks, particularly near the uppermost wall scarp.
A photo of the entire lunar nearside of the Moon
Higher Resolution of Tycho Crater.

The Orbiter missions were designed to photograph all possible Apollo landing sites, to measure meteoroid flux around the Moon, and to determine the lunar gravity field precisely, from accurate tracking of the spacecraft. Orbiter did all these things - and more. As the primary objectives for Apollo program were essentially accomplished on completion of the third mission, the fourth and fifth missions were devoted largely to broader, scientific objectives - photography of the entire lunar nearside during Mission IV and photography of 36 areas of particular scientific interest on the near side during Mission V. In addition, 99 percent of the far side was photographed in more detail than Earth-based telescopes had previously photographed the front.

A photo of the landscape of the Moon with rolling mountains
This breath-taking view was one of Lunar Orbiter II’s most captivating photographic achievements. For many people who had only seen an Earth-based telescopic view looking down into the crater Copernicus, this oblique view suddenly transformed that static lunar feature into a dramatic landscape with rolling mountains, sweeping palisades, and tumbling land-slides. The crater Copernicus is about 60 miles in diameter, 2 miles deep, with 3000-foot cliffs. Peaks near the center of the crater form a mountain range about 10 miles long and 2000 feet high. Lunar Orbiter II recorded this “picture of the year” on November 28, 1964, from 28.4 miles above the surface when it was about 150 miles due south of the crater.

The first Lunar Orbiter spacecraft was launched on August 10, 1966, and photographed nine primary and seven secondary sites that were candidates for Apollo landings. The medium-resolution pictures were of good quality, but a malfunction in the synchronization of the shutter caused loss of the high-resolution frames. In addition, some views of the far side and oblique views of the Earth and Moon were also taken (see here). When we made the suggestion of taking this “Earthrise” picture, Boeing’s project manager, Bob Helberg, reminded NASA that the spacecraft maneuver required constituted a risk that could jeopardize the company profit, which was tied to mission success. He then made the gutsy decision to go ahead anyway and we got this historic photograph.

A map of the highlands west of Mare Tranquillitatis
The best maps weren’t good enough, even though they were based an years of telescopic photography from Earth. In early planning, the rectangle in the map at left was a possibility os a landing site. The handful of craters shown, it was innocently thought, should be easy enough to dodge during the last moments of a piloted landing. The site was an 11- by 20-mile rectangle located in the highlands west of Mare Tranquillitatis.
A photo of many craters on the Moon
The truth about this site was revealed by the accurate eye of Lunar Orbiter II: it was far too rough to be attempted in an early manned landing. In fact, Orbiter pictures showed that parts of the Moon were as rough as a World War I battlefield, with craters within craters, and all parts of the surface tilled and pulverized by a rocky rain. No areas were found smooth enough to meet the original Apollo landing-site criteria, but a few approached it and the presence of a skilled pilot aboard the LM to perform last-minute corrections mode landings possible. The high-quality imagery returned by the Orbiters also returned a harvest of new scientific information.

The next two Lunar Orbiter missions were launched on November 6, 1966, and February 4, 1967. They provided excellent coverage of all 20 potential Apollo landing sites, additional coverage of the far side and other lunar features of scientific interest, and many oblique views of lunar terrain as it might be seen by an orbiting astronaut. One of these was a dramatic oblique photograph of the crater Copernicus, which NASA’s Associate Administrator, Dr. Robert C. Seamans, unveiled at a professional society conference in Boston and which drew a standing ovation and designation as “picture of the year”. Among the possible Apollo sites photographed by Orbiter III was the landing site of Surveyor I. Careful photographic detective work found the shining Surveyor and its dark shadow among the myriad craters.

The Apollo site surveys yielded surprises. Some sites that had looked promising in Earth-based photography were totally unacceptable. No sites were found to be as free of craters as had been originally specified for Apollo, so the Langley lunar landing facility was modified to give astronauts practice at crater dodging. Since the basic Apollo photographic requirements were essentially satisfied by the first three flights, the last two Orbiters launched on May 4 and August 1, 1967, were placed in high near-polar orbits from which they completed coverage of virtually the entire lunar surface.

The other Orbiter experiments were also productive. No unexpected levels of radiation or meteoroids were found to offer a threat to astronaut safety. Studies of the Orbiter motion, however, revealed relatively large gravitational variations due to buried mass concentrations - the phrase was soon telescoped to “mascons” - in the Moon’s interior. This alerted Apollo planners to account properly for mascon perturbations when calculating precise Apollo trajectories.

With the completion of the Ranger, Surveyor, and Orbiter programs, the job of automated spacecraft in scouting the way for Apollo was done. Our confidence was high that few unpleasant surprises would wait our Apollo astronauts on the lunar surface. The standard now passed from automated machinery to hands of flesh and blood.